Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.1	
	Calc. by U	$\begin{array}{\|l\|} \hline \text { Date } \\ 7 / 26 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

PAD FOOTING ANALYSIS AND DESIGN (BS8110-1:1997)

Pad footing details

Length of pad footing
Width of pad footing
Area of pad footing
Depth of pad footing
Depth of soil over pad footing
Density of concrete

Column details

Column base length
Column base width
Column eccentricity in x
Column eccentricity in y

Soil details

Cohesive soil

Density of soil
Design shear strength
Design base friction
Allowable bearing pressure

Axial loading on column

Dead axial load on column Imposed axial load on column
$\mathrm{L}=2000 \mathrm{~mm}$
$B=2000 \mathrm{~mm}$
$A=L \times B=4.000 \mathrm{~m}^{2}$
$\mathrm{h}=\mathbf{6 0 0} \mathrm{mm}$
$h_{\text {soil }}=750 \mathrm{~mm}$
$\rho_{\text {conc }}=\mathbf{2 4 . 0} \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{I}_{\mathrm{A}}=\mathbf{3 0 0} \mathrm{mm}$
$\mathrm{bA}=\mathbf{3 0 0} \mathrm{mm}$
$e_{P \times A}=0 \mathrm{~mm}$
еРуA $=0 \mathrm{~mm}$
$\rho_{\text {soil }}=18.0 \mathrm{kN} / \mathrm{m}^{3}$
$\phi^{\prime}=25.0 \mathrm{deg}$
$\delta=19.3 \mathrm{deg}$
Pbearing $=\mathbf{2 5 0} \mathrm{kN} / \mathrm{m}^{2}$
$P_{G A}=500.0 \mathrm{kN}$
$\mathrm{P}_{\mathrm{QA}}=300.0 \mathrm{kN}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.2	
	Calc. by U	$\begin{array}{\|l\|} \hline \text { Date } \\ 7 / 26 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Wind axial load on column
Total axial load on column

Foundation loads

Dead surcharge load
Imposed surcharge load
Pad footing self weight
Soil self weight
Total foundation load

Calculate pad base reaction

Total base reaction
Eccentricity of base reaction in x
Eccentricity of base reaction in y
Check pad base reaction eccentricity
$P_{w A}=0.0 \mathrm{kN}$
$\mathrm{P}_{\mathrm{A}}=800.0 \mathrm{kN}$

FGsur $=0.000 \mathrm{kN} / \mathrm{m}^{2}$
FQsur $=0.000 \mathrm{kN} / \mathrm{m}^{2}$
$F_{\text {swt }}=\mathrm{h} \times \rho_{\text {conc }}=\mathbf{1 4 . 4 0 0} \mathrm{kN} / \mathrm{m}^{2}$
$F_{\text {soil }}=h_{\text {soil }} \times \rho_{\text {soil }}=13.500 \mathrm{kN} / \mathrm{m}^{2}$
$F=A \times\left(F_{G s u r}+F_{\text {Qsur }}+F_{\text {swt }}+F_{\text {soil }}\right)=111.6 \mathrm{kN}$
$\mathrm{T}=\mathrm{F}+\mathrm{P}_{\mathrm{A}}=911.6 \mathrm{kN}$
$\mathrm{e}_{\mathrm{T} x}=\left(\mathrm{Pa}_{\mathrm{A}} \times \mathrm{eP}_{\times \mathrm{A}}+\mathrm{M}_{\mathrm{xA}}+\mathrm{H}_{\mathrm{xA}} \times \mathrm{h}\right) / \mathrm{T}=\mathbf{0} \mathrm{mm}$
$\mathrm{e}_{\mathrm{T} y}=\left(\mathrm{P}_{\mathrm{A}} \times \mathrm{eP}_{y \mathrm{~A}}+\mathrm{MyA}_{\mathrm{y}}+\mathrm{H}_{y \mathrm{~A}} \times \mathrm{h}\right) / \mathrm{T}=\mathbf{0} \mathrm{mm}$
$\operatorname{abs}($ етх $) / L+\operatorname{abs}\left(\right.$ ету $\left.^{\prime}\right) / B=0.000$
Base reaction acts within middle third of base
Calculate pad base pressures

Minimum base pressure
Maximum base pressure

$$
\begin{aligned}
& \mathrm{q}_{1}=\mathrm{T} / \mathrm{A}-6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{T}} /(\mathrm{L} \times \mathrm{A})-6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{Ty}} /(\mathrm{B} \times \mathrm{A})=\mathbf{2 2 7 . 9 0 0} \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{q}_{2}=\mathrm{T} / \mathrm{A}-6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{T}} /(\mathrm{L} \times \mathrm{A})+6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{Ty}} /(\mathrm{B} \times \mathrm{A})=\mathbf{2 2 7 . 9 0 0} \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{q}_{3}=\mathrm{T} / \mathrm{A}+6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{T}} /(\mathrm{L} \times \mathrm{A})-6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{Ty}} /(\mathrm{B} \times \mathrm{A})=\mathbf{2 2 7 . 9 0 0} \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{q}_{4}=\mathrm{T} / \mathrm{A}+6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{T}} /(\mathrm{L} \times \mathrm{A})+6 \times \mathrm{T} \times \mathrm{e}_{\mathrm{Ty}} /(\mathrm{B} \times \mathrm{A})=\mathbf{2 2 7 . 9 0 0} \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{q}_{\min }=\min \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=\mathbf{2 2 7 . 9 0 0} \mathrm{kN} / \mathrm{m}^{2} \\
& \mathrm{q}_{\max }=\max \left(\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \mathrm{q}_{4}\right)=\mathbf{2 2 7 . 9 0 0} \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

PASS - Maximum base pressure is less than allowable bearing pressure

$227.9 \mathrm{kN} / \mathrm{m}^{2}$

$227.9 \mathrm{kN} / \mathrm{m}^{2}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.3	
	$\begin{aligned} & \text { Calc. by } \\ & \text { U } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Date } \\ 7 / 26 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Partial safety factors for loads

Partial safety factor for dead loads
Partial safety factor for imposed loads
Partial safety factor for wind loads
Ultimate axial loading on column
Ultimate axial load on column
Ultimate foundation loads
Ultimate foundation load
Ultimate horizontal loading on column
Ultimate horizontal load in x direction
Ultimate horizontal load in y direction
Ultimate moment on column
Ultimate moment on column in x direction
Ultimate moment on column in y direction
Calculate ultimate pad base reaction
Ultimate base reaction
Eccentricity of ultimate base reaction in x
Eccentricity of ultimate base reaction in y
Calculate ultimate pad base pressures

Minimum ultimate base pressure
Maximum ultimate base pressure
$\gamma \mathrm{FG}=1.40$
$\gamma \mathrm{fQ}=1.60$
$\gamma \mathrm{fw}=0.00$

$F_{u}=A \times\left[\left(F_{\text {gsur }}+F_{\text {swt }}+F_{\text {soil }}\right) \times \gamma+G+F_{\text {Qsur }} \times \gamma \leftarrow \mathrm{Q}\right]=156.2 \mathrm{kN}$
$\mathrm{H}_{\mathrm{xuA}}=\mathrm{H}_{\mathrm{GxA}} \times \gamma \mathrm{fG}+\mathrm{H}_{\mathrm{QxA}} \times \gamma \mathrm{fQ}+\mathrm{Hw}_{x \mathrm{~A}} \times \gamma \not \mathrm{fW}=0.0 \mathrm{kN}$
$\mathrm{H}_{y \mathrm{uA}}=\mathrm{H}_{\mathrm{GyA}} \times \gamma_{\mathrm{fG}}+\mathrm{H}_{\mathrm{Q} y \mathrm{~A}} \times \gamma_{\mathrm{fQ}}+\mathrm{H}_{\mathrm{y}} \mathrm{AA} \times \gamma_{\mathrm{fW}}=0.0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{XUA}}=\mathrm{MaxA} \times \gamma \mathrm{fG}+\mathrm{MaxA} \times \gamma \not \mathrm{f}+\mathrm{MwxA} \times \gamma \mathrm{FW}=\mathbf{0 . 0 0 0} \mathrm{kNm}$

$T_{u}=F_{u}+P_{u A}=1336.2 \mathrm{kN}$
$e^{T} x u=\left(P_{u A} \times e_{x A}+M_{x u A}+H_{x u A} \times h\right) / T_{u}=0 \mathrm{~mm}$

$q_{2 u}=T u / A-6 \times T u \times e_{T x u} /(L \times A)+6 \times T u \times e^{T} y u /(B \times A)=334.060 \mathrm{kN} / \mathrm{m}^{2}$

$q_{4 u}=T_{u} / A+6 \times T_{u \times e} \times u /(L \times A)+6 \times T_{u \times \text { eTyu }} /(B \times A)=334.060 \mathrm{kN} / \mathrm{m}^{2}$
$q_{\text {minu }}=\min \left(q_{1 u}, q_{2 u}, q_{3 u}, q_{4 u}\right)=334.060 \mathrm{kN} / \mathrm{m}^{2}$
$q_{\text {maxu }}=\max \left(q_{1 u}, q_{2 u}, q_{3 u}, q_{4 u}\right)=334.060 \mathrm{kN} / \mathrm{m}^{2}$

Calculate rate of change of base pressure in x direction

Left hand base reaction
Right hand base reaction
Length of base reaction
Rate of change of base pressure

Calculate pad lengths in x direction

Left hand length
Right hand length

Calculate ultimate moments in x direction

Ultimate moment in x direction
$f_{u L}=\left(q_{1 u}+q_{2 u}\right) \times B / 2=668.120 \mathrm{kN} / \mathrm{m}$
$f_{u R}=\left(q_{3 u}+q_{4 u}\right) \times B / 2=668.120 \mathrm{kN} / \mathrm{m}$
$L_{x}=L=2000 \mathrm{~mm}$
$C_{x}=\left(f_{u R}-f u L_{L}\right) / L_{x}=0.000 \mathrm{kN} / \mathrm{m} / \mathrm{m}$
$L L=L / 2+e P_{X A}=1000 \mathrm{~mm}$
$L_{R}=L / 2-e_{P \times A}=1000 \mathrm{~mm}$
$M_{x}=f_{u L} \times L^{2} / 2+C x \times L^{3} / 6-\mathrm{Fu}_{\mathrm{u}} \times \mathrm{LL}^{2} /(2 \times \mathrm{L})=\mathbf{2 9 5 . 0 0 0} \mathrm{kNm}$

Calculate rate of change of base pressure in y direction

Top edge base reaction
Bottom edge base reaction
Length of base reaction
Rate of change of base pressure
$f_{u T}=\left(q_{2 u}+q_{4 u}\right) \times L / 2=668.120 \mathrm{kN} / \mathrm{m}$
$f_{u B}=\left(q_{1 u}+q_{3 u}\right) \times L / 2=668.120 \mathrm{kN} / \mathrm{m}$
$L_{y}=B=2000 \mathrm{~mm}$
$C_{y}=\left(f_{u B}-f_{u T}\right) / L_{y}=0.000 \mathrm{kN} / \mathrm{m} / \mathrm{m}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.4	
	Calc. by U	$\begin{array}{\|l\|} \hline \text { Date } \\ 7 / 26 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

Calculate pad lengths in y direction

Top length
Bottom length
Calculate ultimate moments in y direction
Ultimate moment in y direction

Material details

Characteristic strength of concrete
Characteristic strength of reinforcement
Characteristic strength of shear reinforcement
Nominal cover to reinforcement
Moment design in \mathbf{x} direction
Diameter of tension reinforcement
Depth of tension reinforcement
$L_{T}=B / 2-e_{\text {PyA }}=1000 \mathrm{~mm}$
$L_{B}=B / 2+$ еРуА $=1000$ mm
$M_{y}=f_{u} \times L^{2} / 2+C_{y} \times L^{3} / 6-F_{u} \times L^{2} /(2 \times B)=295.000 \mathrm{kNm}$
$\mathrm{f} \mathrm{cu}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{yv}}=\mathbf{2 5 0 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
Cnom $=50 \mathrm{~mm}$
$\phi_{\times B}=16 \mathrm{~mm}$
$\mathrm{d} \mathrm{x}=\mathrm{h}-\mathrm{Cnom}-\phi_{\mathrm{xB}} / 2=542 \mathrm{~mm}$

Design formula for rectangular beams (cl 3.4.4.4)
$K_{x}=M_{x} /\left(B \times d_{x}^{2} \times f \mathrm{fu}\right)=\mathbf{0 . 0 1 7}$
$K_{x^{\prime}}=0.156$
$K_{x}<K_{x}{ }^{\prime}$ compression reinforcement is not required
Lever arm
Area of tension reinforcement required
Minimum area of tension reinforcement
Tension reinforcement provided
Area of tension reinforcement provided
$\left.\left.\sqrt{ }\left(0.25-K_{x} / 0.9\right)\right], 0.95\right)=515 \mathrm{~mm}$
$z_{x}=d_{x} \times \min \left(\left[0.5+\sqrt{ }\left(0.25-K_{x} / 0.9\right)\right], 0.95\right)=515 \mathrm{~mm}$
$A_{s_{-} x_{\text {_req }}}=M_{x} /\left(0.87 \times f_{y} \times Z_{x}\right)=1317 \mathrm{~mm}^{2}$
A_{s-x} min $=0.0013 \times B \times h=1560 \mathrm{~mm}^{2}$
12 No. 16 dia. bars bottom (175 centres)
As_xB_prov $=N_{x B} \times \pi \times \phi \times B^{2} / 4=2413 \mathrm{~mm}^{2}$
PASS - Tension reinforcement provided exceeds tension reinforcement required
Moment design in y direction
Diameter of tension reinforcement
Depth of tension reinforcement
$\phi_{y B}=16 \mathrm{~mm}$
$\mathrm{dy}=\mathrm{h}-\mathrm{Cnom}-\phi \times \mathrm{B}-\phi_{y \mathrm{~B}} / 2=526 \mathrm{~mm}$

Design formula for rectangular beams (cl 3.4.4.4)
$\mathrm{K}_{\mathrm{y}}=\mathrm{My}_{\mathrm{y}} /\left(\mathrm{L} \times \mathrm{dy}^{2} \times \mathrm{fcu}\right)=\mathbf{0 . 0 1 8}$
$\mathrm{Ky}^{\prime}=0.156$
$K_{y}<K_{y}{ }^{\prime}$ compression reinforcement is not required
Lever arm
Area of tension reinforcement required
Minimum area of tension reinforcement
Tension reinforcement provided
Area of tension reinforcement provided
$z_{y}=d_{y} \times \min \left(\left[0.5+\sqrt{ }\left(0.25-K_{y} / 0.9\right)\right], 0.95\right)=500 \mathrm{~mm}$
$A_{s y_{-} \text {req }}=M_{y} /\left(0.87 \times f_{y} \times z_{y}\right)=1357 \mathrm{~mm}^{2}$
As_y_min $=0.0013 \times \mathrm{L} \times \mathrm{h}=\mathbf{1 5 6 0} \mathrm{mm}^{2}$
10 No. 16 dia. bars bottom (200 centres)
As \quad yв_prov $=N_{y B} \times \pi \times \phi_{\text {yB }}{ }^{2} / 4=2011 \mathrm{~mm}^{2}$

PASS - Tension reinforcement provided exceeds tension reinforcement required

Calculate ultimate shear force at drom top face of column
Ultimate pressure for shear

Area loaded for shear
Ultimate shear force
$q_{s u}=\left(q_{1 u}-C_{y} \times\left(B / 2+e_{\text {PyA }}+b_{A} / 2+d_{y}\right) / L+q_{4 u}\right) / 2$
$\mathrm{q}_{\mathrm{su}}=334.060 \mathrm{kN} / \mathrm{m}^{2}$
$A_{s}=L \times\left(B / 2-\right.$ ePyA $\left.-b_{A} / 2-d_{y}\right)=0.648 \mathrm{~m}^{2}$
$V_{s u}=A_{s} \times\left(q_{s u}-F_{u} / A\right)=191.160 \mathrm{kN}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.5	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 7 / 26 / 2021 \end{aligned}$	Chk'd by	Date	App'd by	Date

Shear stresses at d from top face of column (cl 3.5.5.2)
Design shear stress
$V_{s u}=V_{s u} /\left(L \times d_{y}\right)=0.182 \mathrm{~N} / \mathrm{mm}^{2}$
From BS 8110:Part 1:1997- Table 3.8
Design concrete shear stress
$\mathrm{v}_{\mathrm{c}}=0.79 \mathrm{~N} / \mathrm{mm}^{2} \times \min \left(3,\left[100 \times \text { As_yb_prov } /\left(\mathrm{L} \times \mathrm{dyy}_{\mathrm{y}}\right)\right]^{1 / 3}\right) \times \mathrm{max}((400 \mathrm{~mm} /$ dy $\left.)^{1 / 4}, 0.67\right) \times\left(\min \left(\mathrm{f}_{\mathrm{cu}} / 1 \mathrm{~N} / \mathrm{mm}^{2}, 40\right) / 25\right)^{1 / 3} / 1.25=0.361 \mathrm{~N} / \mathrm{mm}^{2}$

Allowable design shear stress
$V_{\max }=\min \left(0.8 \mathrm{~N} / \mathrm{mm}^{2} \times \sqrt{ }\left(\right.\right.$ f $\left.\left._{\text {cu }} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5 \mathrm{~N} / \mathrm{mm}^{2}\right)=4.382 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - $v_{s u}<v_{c}-$ No shear reinforcement required

Calculate ultimate punching shear force at face of column

Ultimate pressure for punching shear

Average effective depth of reinforcement
Area loaded for punching shear at column Length of punching shear perimeter

Ultimate shear force at shear perimeter
Effective shear force at shear perimeter
$q_{\text {puA }}=q_{1 u}+\left[\left(L / 2+\right.\right.$ epxA $\left.\left.-I_{A} / 2\right)+\left(I_{A}\right) / 2\right] \times C_{x} / B-\left[\left(B / 2+\right.\right.$ еРyA $\left.\left.-b_{A} / 2\right)+\left(b_{A}\right) / 2\right] \times C_{y} / L=$
$334.060 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{d}=(\mathrm{d} \mathrm{x}+\mathrm{dy}) / 2=534 \mathrm{~mm}$
$A_{p A}=\left(I_{A}\right) \times\left(b_{A}\right)=0.090 \mathrm{~m}^{2}$
$u_{\text {PA }}=2 \times\left(I_{A}\right)+2 \times\left(\mathrm{bA}_{\mathrm{A}}\right)=1200 \mathrm{~mm}$
$V_{\text {puA }}=P u A+(F u / A-q p u A) \times A_{p A}=1153.450 \mathrm{kN}$
$V_{\text {puAeff }}=V_{\text {puA }}=1153.450 \mathrm{kN}$

Punching shear stresses at face of column (cl 3.7.7.2)

Design shear stress	$V_{\text {puA }}=V_{\text {puAeff }} /\left(u_{\text {pA }} \times \mathrm{d}\right)=\mathbf{1 . 8 0 0 ~ N} / \mathrm{mm}^{2}$
Allowable design shear stress	$V_{\text {max }}=\min \left(0.8 \mathrm{~N} / \mathrm{mm}^{2} \times \sqrt{ }\left(\mathrm{f}_{\text {cu }} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5 \mathrm{~N} / \mathrm{mm}^{2}\right)=\mathbf{4 . 3 8 2 \mathrm { N } / \mathrm { mm } ^ { 2 }}$

PASS - Design shear stress is less than allowable design shear stress

Calculate ultimate punching shear force at perimeter of 1.5 d from face of column

Ultimate pressure for punching shear

Average effective depth of reinforcement
Area loaded for punching shear at column
Length of punching shear perimeter
Ultimate shear force at shear perimeter
Effective shear force at shear perimeter
qpuA1.5d $=q_{1 u}+[L / 2] \times C_{x} / B-\left[\left(B / 2+e\right.\right.$ PyA $\left.\left.-b_{A} / 2-1.5 \times d\right)+(b A+2 \times 1.5 \times d) / 2\right] \times C_{y} / L=$ $334.060 \mathrm{kN} / \mathrm{m}^{2}$
$d=(d x+d y) / 2=534 \mathrm{~mm}$
$A_{\text {pA } 1.5 d}=L \times(b A+2 \times 1.5 \times d)=3.804 \mathrm{~m}^{2}$
$u_{\text {pA1 } 15 d}=2 \times L=4000 \mathrm{~mm}$
$V_{\text {puA1.5d }}=P_{u A}+(F u / A-q p u A 1.5 d) \times A_{p A 1.5 d}=57.820 \mathrm{kN}$
$V_{\text {puA1.5deff }}=V_{\text {puA1.5d }} \times 1.25=72.275 \mathrm{kN}$

Punching shear stresses at perimeter of 1.5 d from face of column (cl 3.7.7.2)

Design shear stress
$V_{\text {puA1.5d }}=V_{\text {puA1.5deff }} /\left(u_{\text {pA1 } 15 d} \times d\right)=0.034 \mathrm{~N} / \mathrm{mm}^{2}$
From BS 8110:Part 1:1997- Table 3.8

Design concrete shear stress

Allowable design shear stress

$\left.2]^{1 / 3}\right) \times \max \left(\left(800 \mathrm{~mm} /\left(d_{x}+d_{y}\right)\right)^{1 / 4}, 0.67\right) \times\left(\min \left(f_{c u} / 1 \mathrm{~N} / \mathrm{mm}^{2}, 40\right) / 25\right)^{1 / 3} /$
$1.25=0.370 \mathrm{~N} / \mathrm{mm}^{2}$
$V_{\max }=\min \left(0.8 \mathrm{~N} / \mathrm{mm}^{2} \times \sqrt{ }\left(\mathrm{f}_{\mathrm{cu}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5 \mathrm{~N} / \mathrm{mm}^{2}\right)=4.382 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - $V_{\text {puA } 1.5 d}<V_{c}-$ No shear reinforcement required

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.6	
	$\begin{aligned} & \text { Calc. by } \\ & \text { U } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Date } \\ 7 / 26 / 2021 \end{array}$	Chk'd by	Date	App'd by	Date

12 No. 16 dia. bars btm ($175 \mathrm{c} / \mathrm{c}$)

- --- Shear at d from column face
- - Punching shear perimeter at $1.5 \times \mathrm{d}$ from column face

