	Project				Job Ref.	
	Section				Sheet no./rev. 1	
	$\begin{aligned} & \text { Calc. by } \\ & \text { U } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 17 / 2022 \end{array}$	Chk'd by	Date	App'd by	Date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No. 1

Tedds calculation version 2.9.04

Retaining wall details

Stem type
Stem height
Stem thickness
Angle to rear face of stem
Stem density
Toe length
Heel length
Base thickness
Base density
Height of retained soil
Angle of soil surface
Depth of cover
Cantilever
$\mathrm{h}_{\text {stem }}=\mathbf{5 1 0 0} \mathbf{~ m m}$
$\mathrm{t}_{\text {stem }}=\mathbf{3 0 0} \mathbf{~ m m}$
$\alpha=90 \mathrm{deg}$
$\gamma_{\text {stem }}=\mathbf{2 5} \mathrm{kN} / \mathrm{m}^{3}$
Itoe $=950 \mathrm{~mm}$
$I_{\text {heel }}=\mathbf{1 7 5 0} \mathbf{~ m m}$
tbase $=400 \mathrm{~mm}$
$\gamma_{\text {base }}=\mathbf{2 5} \mathrm{kN} / \mathrm{m}^{3}$
$h_{\text {ret }}=\mathbf{5 1 0 0} \mathrm{mm}$
$\beta=0$ deg
dcover $=\mathbf{0} \mathbf{~ m m}$
Retained soil properties
Soil type
Moist density
Saturated density
Characteristic effective shear resistance angle
Characteristic wall friction angle
Medium dense gravel
$\gamma_{\mathrm{mr}}=17 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\mathrm{sr}}=20.5 \mathrm{kN} / \mathrm{m}^{3}$
ϕ^{\prime} r. $=36 \mathrm{deg}$
$\delta r . k=18 \mathrm{deg}$

Base soil properties

Soil type Medium dense well graded sand
Soil density
Characteristic cohesion
Characteristic effective shear resistance angle
Characteristic wall friction angle
$\gamma_{\mathrm{b}}=20 \mathrm{kN} / \mathrm{m}^{3}$
c^{\prime} b. $=\mathbf{0} \mathrm{kN} / \mathrm{m}^{2}$
$\phi^{\prime} \mathrm{b} . \mathrm{k}=36 \mathrm{deg}$
δ b.k $=18$ deg
δ bb. $\mathrm{k}=\mathbf{2 7}$ deg

Loading details

Permanent surcharge load
Variable surcharge load

Surchargeg $=1 \mathrm{kN} / \mathrm{m}^{2}$
Surcharge $=10 \mathrm{kN} / \mathrm{m}^{2}$

LeddsLEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.2	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

General arrangement

Calculate retaining wall geometry

Base length
Moist soil height
Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Area of moist soil

- Distance to vertical component
- Distance to horizontal component
$I_{\text {base }}=I_{\text {toe }}+$ tstem $+I_{\text {heel }}=\mathbf{3 0 0 0} \mathbf{~ m m}$
$h_{\text {moist }}=h_{\text {soil }}=5100 \mathrm{~mm}$
$I_{\text {sur }}=I_{\text {heel }}=1750 \mathrm{~mm}$
$X_{s u r}$ v $=l_{\text {base }}-$ lheel $/ 2=2125 \mathrm{~mm}$
$h_{\text {eff }}=h_{\text {base }}+d_{\text {cover }}+h_{\text {ret }}=5500 \mathrm{~mm}$
$X_{\text {sur_h }}=h_{\text {eff }} / 2=\mathbf{2 7 5 0} \mathbf{~ m m}$
Astem $=h_{\text {stem }} \times \mathrm{t}_{\text {stem }}=1.53 \mathrm{~m}^{2}$
Xstem $=$ Itoe + tstem $/ 2=1100 \mathbf{~ m m}$
Abase $=l_{\text {base }} \times$ tbase $=1.2 \mathrm{~m}^{2}$
Xbase $=l_{\text {base }} / 2=1500 \mathrm{~mm}$
Amoist $=h_{\text {moist }} \times I_{\text {heel }}=8.925 \mathrm{~m}^{2}$
Xmoist_v $=$ loase $-\left(h_{\text {moist }} \times\right.$ Ineel $\left.^{2} / 2\right) / A_{\text {moist }}=\mathbf{2 1 2 5} \mathbf{m m}$
$X_{\text {moist_h }}=$ heff $/ 3=1833 \mathrm{~mm}$

Design approach 1

Partial factors on actions - Table A. 3 - Combination 1

Partial factor set
Permanent unfavourable action
Permanent favourable action
Variable unfavourable action

A1
$\gamma G=1.35$
$\gamma \mathrm{Gf}=1.00$
$\gamma Q=1.50$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.3	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

Variable favourable action
$\gamma \mathrm{Qf}=\mathbf{0 . 0 0}$

Partial factors for soil parameters - Table A. 4 - Combination 1

Soil parameter set
Angle of shearing resistance
Effective cohesion
Weight density

Retained soil properties

Design moist density
Design saturated density
Design effective shear resistance angle
Design wall friction angle
Base soil properties
Design soil density
Design effective shear resistance angle
Design wall friction angle
Design base friction angle
Design effective cohesion

Using Coulomb theory

Active pressure coefficient

Passive pressure coefficient

Sliding check

Vertical forces on wall
Wall stem
Wall base
Moist retained soil
Total
Horizontal forces on wall
Surcharge load

Moist retained soil
Total
Check stability against sliding
Base soil resistance
Base friction
Resistance to sliding
Factor of safety

M1
$\gamma_{\phi^{\prime}}=1.00$
$\gamma_{\mathrm{c}^{\prime}}=1.00$
$\gamma_{\gamma}=1.00$
Library item Partial factors output
$\gamma_{\mathrm{mr}}{ }^{\prime}=\gamma_{\mathrm{mr}} / \gamma_{\gamma}=17 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\mathrm{sr}}{ }^{\prime}=\gamma_{\mathrm{sr}} / \gamma_{\gamma}=20.5 \mathrm{kN} / \mathrm{m}^{3}$
ϕ^{\prime}..d $=\operatorname{atan}\left(\tan \left(\phi^{\prime}\right.\right.$ r.k $\left.) / \gamma_{\phi^{\prime}}\right)=36 \mathrm{deg}$
δ r.d $=\operatorname{atan}\left(\tan (\delta r . \mathrm{k}) / \gamma_{\phi^{\prime}}\right)=18 \mathrm{deg}$
$\gamma_{\mathrm{b}}{ }^{\prime}=\gamma_{\mathrm{b}} / \gamma_{\gamma}=20 \mathrm{kN} / \mathrm{m}^{3}$
ϕ^{\prime} b.d $=\operatorname{atan}\left(\tan \left(\phi^{\prime}\right.\right.$ b.k $\left.) / \gamma_{\phi^{\prime}}\right)=36 \mathrm{deg}$
$\delta_{\text {b.d }}=\operatorname{atan}\left(\tan \left(\delta_{\text {b.k }}\right) / \gamma_{\phi^{\prime}}\right)=18 \operatorname{deg}$
$\delta_{b b . d}=\operatorname{atan}\left(\tan \left(\delta_{b b . k}\right) / \gamma_{\phi^{\prime}}\right)=\mathbf{2 7} \mathrm{deg}$
c^{\prime} b.d $=c^{\prime}$ b.k $/ \gamma_{c^{\prime}}=\mathbf{0} \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{K}_{\mathrm{A}}=\sin \left(\alpha+\phi^{\prime} \text { r.d }\right)^{2} /\left(\sin (\alpha)^{2} \times \sin (\alpha-\delta\right.$ r.d $) \times\left[1+\sqrt{ }\left[\sin \left(\phi^{\prime}\right.\right.\right.$ r.d $+\delta$ r.d $) \times \sin \left(\phi^{\prime}\right.$ r.d $\left.-\beta\right)$
$/(\sin (\alpha-\delta$ r. $\left.\alpha) \times \sin (\alpha+\beta))]]^{2}\right)=0.236$
$K_{P}=\sin \left(90-\phi^{\prime} \text { b.d }\right)^{2} /\left(\sin (90+\delta\right.$ b.d $) \times\left[1-\sqrt{ }\left[\sin \left(\phi^{\prime}\right.\right.\right.$ b.d $\left.+\delta_{\text {b.d }}\right) \times \sin \left(\phi^{\prime}\right.$ b.d $) /(\sin (90$
$+\delta$ b.d) $)$) $\left.]^{2}\right)=8.022$
$\mathrm{F}_{\text {stem }}=\gamma_{\mathrm{Gf}} \times \mathrm{A}_{\text {stem }} \times \gamma_{\text {stem }}=38.3 \mathrm{kN} / \mathrm{m}$
$F_{\text {base }}=\gamma$ Gf $\times A_{\text {base }} \times \gamma_{\text {base }}=30 \mathrm{kN} / \mathrm{m}$
Fmoist_v $=\gamma$ Gf \times Amoist $\times \gamma \mathrm{mr}^{\prime}=151.7 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}+F_{\text {moist_v }}=220 \mathrm{kN} / \mathrm{m}$

Fsur_h $=K_{A} \times \cos (\delta r . d) \times(\gamma G \times$ Surcharge $G+\gamma Q \times$ Surcharge $) \times$ heff $=\mathbf{2 0 . 2}$ kN/m

Fmoist_h $=\gamma \mathrm{G} \times \mathrm{KA}_{\mathrm{A}} \times \cos (\delta$ r.d $) \times \gamma \mathrm{mr}^{\prime} \times$ heff $^{2} / 2=78 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_h }}=F_{\text {moist_h }}+F_{\text {sur_h }}=98.2 \mathrm{kN} / \mathrm{m}$
$F_{\text {exc_h }}=\gamma \operatorname{Gf} \times \mathrm{KP}_{\mathrm{P}} \times \cos (\delta$ b.d $) \times \gamma \mathrm{b}^{\prime} \times\left(\mathrm{h}_{\text {pass }}+\mathrm{hbase}\right)^{2} / 2=\mathbf{1 2 . 2} \mathrm{kN} / \mathrm{m}$
$F_{\text {friction }}=F_{\text {total } _v} \times \tan (\delta$ bb. d$)=112.1 \mathrm{kN} / \mathrm{m}$
$F_{\text {rest }}=F_{\text {exc_h }}+F_{\text {friction }}=124.3 \mathrm{kN} / \mathrm{m}$
FoSsl $=F_{\text {rest }} / F_{\text {total_ } h}=\mathbf{1 . 2 6 6}$
PASS - Resistance to sliding is greater than sliding force

	Project				Job Ref.	
	Section				Sheet no./rev.4	
	Calc. by U	$\begin{array}{\|l} \hline \text { Date } \\ 10 / 17 / 2022 \end{array}$	Chk'd by	Date	App'd by	Date

Overturning check

Vertical forces on wall

Wall stem
Wall base
Moist retained soil
Total

Horizontal forces on wall

Surcharge load

Moist retained soil
Base soil
Total
Overturning moments on wall
Surcharge load
Moist retained soil
Total
Restoring moments on wall
Wall stem
Wall base
Moist retained soil
Base soil
Total

Check stability against overturning

Factor of safety

Bearing pressure check

Vertical forces on wall

Wall stem
Wall base
Surcharge load
Moist retained soil
Total
Horizontal forces on wall
Surcharge load

Moist retained soil
Base soil
Total

Moments on wall

Wall stem Mstem $=F_{\text {stem }} \times \mathrm{X}_{\text {stem }}=56.8 \mathrm{kNm} / \mathrm{m}$
Wall base
$F_{\text {stem }}=\gamma \mathrm{Gf} \times \mathrm{A}_{\text {stem }} \times \gamma_{\text {stem }}=38.3 \mathrm{kN} / \mathrm{m}$
$F_{\text {base }}=\gamma$ Gf \times Abase $\times \gamma_{\text {base }}=30 \mathrm{kN} / \mathrm{m}$
Fmoistı $=\gamma \mathrm{Gf} \times \mathrm{A}_{\text {moist }} \times \gamma_{\mathrm{mr}}{ }^{\prime}=151.7 \mathrm{kN} / \mathrm{m}$
$F_{\text {total } _v}=F_{\text {stem }}+F_{\text {base }}+F_{\text {moist } _v}=220$ kN $/ \mathrm{m}$

Fsur_h $=\mathrm{K}_{\mathrm{A}} \times \cos \left(\delta_{\text {r. } . \mathrm{d}}\right) \times(\gamma \mathrm{G} \times$ Surcharge $\mathrm{G}+\gamma \mathrm{Q} \times$ Surcharge Q$) \times$ heff $=\mathbf{2 0 . 2}$ kN/m
Fmoist_h $=\gamma \mathrm{G} \times \mathrm{K}_{\mathrm{A}} \times \cos \left(\delta_{\text {r.d }}\right) \times \gamma_{\mathrm{mr}} \mathrm{r}^{\prime} \times$ heff $^{2} / 2=78 \mathrm{kN} / \mathrm{m}$
$F_{e x c _h}=-\gamma_{G f} \times K p \times \cos (\delta$ b.d $) \times \gamma_{b}{ }^{\prime} \times\left(h_{\text {pass }}+h_{\text {base }}\right)^{2} / 2=-12.2 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_ } h}=F_{\text {moist } _h}+F_{\text {exc_ }} h+F_{\text {sur_ }} h=85.9 \mathrm{kN} / \mathrm{m}$
$M_{\text {sur_OT }}=\mathrm{F}_{\text {sur_h }} \times \mathrm{X}_{\text {sur_h }}=\mathbf{5 5 . 5} \mathbf{k N m} / \mathrm{m}$
Mmoist_OT $=$ Fmoist $\mathrm{h} \times$ Xmoist_ $\mathrm{h}=\mathbf{1 4 2 . 9 \mathrm { kNm } / \mathrm { m }}$

$M_{\text {stem_R }}=F_{\text {stem }} \times$ Xstem $=\mathbf{4 2 . 1} \mathrm{kNm} / \mathrm{m}$
Mbase_R $=$ Fbase $\times \mathrm{X}_{\text {base }}=\mathbf{4 5} \mathrm{kNm} / \mathrm{m}$
Mmoist $\mathrm{R}=$ Fmoist_v \times Xmoist_v $=322.4 \mathrm{kNm} / \mathrm{m}$
$M_{\text {exc_R }}=-$ Fexc_h \times Xexc_h $=1.6 \mathrm{kNm} / \mathrm{m}$
Mtotal_R $=$ Mstem_R + Mbase_R + Mmoist_R + Mexc_R = 411.1 kNm/m

FoSot $=$ Mtotal R $/$ Mtotal $^{\text {ot }}=\mathbf{2 . 0 7 1}$

PASS - Maximum restoring moment is greater than overturning moment

$F_{\text {stem }}=\gamma G \times A_{\text {stem }} \times \gamma_{\text {stem }}=51.6 \mathrm{kN} / \mathrm{m}$
$F_{\text {base }}=\gamma G \times$ Abase $\times \gamma_{\text {base }}=40.5 \mathrm{kN} / \mathrm{m}$
Fsur_v $=(\gamma G \times$ Surcharge $G+\gamma Q \times$ Surcharge $Q) \times$ Ineel $=\mathbf{2 8 . 6} \mathrm{kN} / \mathrm{m}$
Fmoist_v $=\gamma \mathrm{G} \times \mathrm{Amoist} \times \gamma \mathrm{mr}=204.8 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_ }}=F_{\text {stem }}+F_{\text {base }}+F_{\text {moist_v }}+F_{\text {sur_v }}=325.6 \mathrm{kN} / \mathrm{m}$

Fsur_h $=K_{A} \times \cos (\delta r . d) \times\left(\gamma G \times\right.$ Surcharge $_{G}+\gamma \mathrm{Q} \times$ Surcharge $) \times$ heff $=\mathbf{2 0 . 2}$ kN/m

Fmoist_h $=\gamma G \times \mathrm{K}_{\mathrm{A}} \times \cos (\delta \mathrm{r} . \mathrm{d}) \times \gamma_{\mathrm{mr} \mathrm{\prime}} \times$ heff $^{2} / 2=78 \mathrm{kN} / \mathrm{m}$
$F_{\text {pass_h }}=-\gamma G \times K P \times \cos (\delta$ b.d $) \times \gamma_{b} \times\left(d_{\text {cover }}+h_{\text {base }}\right)^{2} / 2=-12.2 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_h }}=\max \left(F_{\text {moist_h }}+F_{\text {pass_h }}+F_{\text {sur_h }}-F_{\text {total_v }} \times \tan (\delta\right.$ bb.d $\left.), 0 \mathrm{kN} / \mathrm{m}\right)=0 \mathrm{kN} / \mathrm{m}$
$M_{\text {base }}=F_{\text {base }} \times$ Xbase $=\mathbf{6 0 . 8} \mathbf{~ k N m} / \mathrm{m}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.5	
	Calc. by U	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 17 / 2022 \end{array}$	Chk'd by	Date	App'd by	Date

Surcharge load	Msur $=F_{\text {sur_ }} \mathrm{v} \times \mathrm{Xsur}_{-} \mathrm{v}-\mathrm{F}_{\text {sur_ }} \mathrm{h} \times \mathrm{X}_{\text {sur_ }} \mathrm{h}=5.3 \mathrm{kNm} / \mathrm{m}$
Moist retained soil	
Base soil	$M_{\text {pass }}=-F_{\text {pass_h }} \times$ Xpass_h $=1.6 \mathrm{kNm} / \mathrm{m}$
Total	$M_{\text {total }}=M_{\text {stem }}+\mathrm{Mbase}^{\text {a }}+\mathrm{M}_{\text {moist }}+\mathrm{M}_{\text {pass }}+\mathrm{Msur}^{\text {a }} \mathbf{4 1 6 . 8} \mathrm{kNm} / \mathrm{m}$
Check bearing pressure	
Distance to reaction	$\bar{x}=M_{\text {total }} / F_{\text {total } _ \text {v }}=\mathbf{1 2 8 0} \mathrm{mm}$
Eccentricity of reaction	$\mathrm{e}=\overline{\mathrm{x}}-\mathrm{l}$ loase $/ 2=-220 \mathrm{~mm}$
Loaded length of base	lload $=2 \times \bar{x}=2560 \mathrm{~mm}$
Bearing pressure at toe	qtoe $=\mathrm{F}_{\text {total_v }} /$ load $=127.2 \mathrm{kN} / \mathrm{m}^{2}$
Bearing pressure at heel	qneel $=\mathbf{0} \mathrm{kN} / \mathrm{m}^{2}$
Effective overburden pressure	$\mathrm{q}=\left(\right.$ tbase $\left.+\mathrm{d}_{\text {cover }}\right) \times \mathrm{\gamma b}^{\prime}=8 \mathrm{kN} / \mathrm{m}^{2}$
Design effective overburden pressure	$\mathrm{q}^{\prime}=\mathrm{q} / \gamma_{\gamma}=8 \mathrm{kN} / \mathrm{m}^{2}$
Bearing resistance factors	$\mathrm{N}_{\mathrm{q}}=\operatorname{Exp}\left(\pi \times \tan \left(\phi^{\prime}\right.\right.$ b.d $\left.)\right) \times\left(\tan \left(45 \mathrm{deg}+\phi^{\prime} \text { b.d } / 2\right)\right)^{2}=37.752$
	$N_{\mathrm{c}}=\left(N_{\mathrm{q}}-1\right) \times \cot \left(\phi^{\prime} \mathrm{b} . \mathrm{d}\right)=50.585$
	$\mathrm{N}_{\gamma}=2 \times\left(\mathrm{N}_{\mathrm{q}}-1\right) \times \tan \left(\phi^{\prime} \mathrm{b} . \mathrm{d}\right)=53.405$
Foundation shape factors	$\mathrm{Sq}=1$
	$\mathrm{S}_{\mathrm{\gamma}}=1$
	$\mathrm{Sc}=1$
Load inclination factors	$\mathrm{H}=\mathrm{F}_{\text {sur_h }}+\mathrm{F}_{\text {moist_h }}+\mathrm{F}_{\text {pass_}} \mathrm{h}=85.9 \mathrm{kN} / \mathrm{m}$
	$\mathrm{V}=\mathrm{F}_{\text {total_v }}=325.6 \mathrm{kN} / \mathrm{m}$
	$\mathrm{m}=2$
	$\mathrm{i}_{q}=\left[1-\mathrm{H} /\left(\mathrm{V}+\mathrm{l}_{\text {load }} \times \mathrm{C}^{\prime} \mathrm{b} . \mathrm{d} \times \cot \left(\phi^{\prime} \text { b. } \mathrm{d}\right) \text {) }\right]^{m}=\mathbf{0 . 5 4 2}\right.$
	$\mathrm{i}_{\mathrm{y}}=\left[1-\mathrm{H} /\left(\mathrm{V}+\mathrm{looad} \times \mathrm{C}^{\prime} \text { b.d } \times \cot \left(\phi^{\prime} \text { b.d) }\right)\right]^{(m+1)}=0.399\right.$
	$\mathrm{i}_{\mathrm{c}}=\mathrm{i}_{\mathrm{q}}-\left(1-\mathrm{i}_{\mathrm{q}}\right) /\left(\mathrm{N}_{\mathrm{c}} \times \tan \left(\phi^{\prime} \mathrm{b} . \mathrm{d}\right)\right)=\mathbf{0 . 5 2 9}$

Net ultimate bearing capacity

Factor of safety

$$
\begin{aligned}
\mathrm{nf}_{f}=\mathrm{c}^{\prime} \mathrm{b} . \mathrm{d} & \times \mathrm{N}_{\mathrm{c}} \times \mathrm{S}_{\mathrm{c}} \times \mathrm{i}_{\mathrm{c}}+\mathrm{q}^{\prime} \times \mathrm{N}_{\mathrm{q}} \times \mathrm{S}_{\mathrm{q}} \times \mathrm{i}_{q}+0.5 \times \gamma \mathrm{b}^{\prime} \times \text { load } \times \mathrm{N}_{\gamma} \times \mathrm{s}_{\gamma} \times \mathrm{i}_{\gamma}=708.7 \mathrm{kN} / \mathrm{m}^{2} \\
& \text { FoSbp }^{2}=\mathrm{n}_{\mathrm{f}} / \max \left(\text { qtoe }^{2} \text { qheel }\right)=5.573
\end{aligned}
$$

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

Design approach 1

Partial factors on actions - Table A. 3 - Combination 2
Partial factor set A2

Permanent unfavourable action	$\gamma G=\mathbf{1 . 0 0}$
Permanent favourable action	$\gamma G=\mathbf{1 . 0 0}$
Variable unfavourable action	$\gamma Q=\mathbf{1 . 3 0}$
Variable favourable action	$\gamma Q f=\mathbf{0 . 0 0}$

Partial factors for soil parameters - Table A. 4 - Combination 2

Soil parameter set
Angle of shearing resistance
Effective cohesion
Weight density

M2
$\gamma_{\phi^{\prime}}=1.25$
$\gamma \mathrm{c}^{\prime}=1.25$
$\gamma_{\gamma}=1.00$

1eスa Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.6	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

Retained soil properties

Design moist density
Design saturated density
Design effective shear resistance angle
Design wall friction angle

Base soil properties

Design soil density
Design effective shear resistance angle
Design wall friction angle
Design base friction angle
Design effective cohesion
Using Coulomb theory
Active pressure coefficient

Passive pressure coefficient

Sliding check

Vertical forces on wall

Wall stem
Wall base
Moist retained soil
Total

Horizontal forces on wall

Surcharge load

Moist retained soil
Total

Check stability against sliding

Base soil resistance
Base friction
Resistance to sliding
Factor of safety

$$
\begin{aligned}
& \gamma_{\mathrm{mr}}=\gamma_{\mathrm{mr}} / \gamma_{\gamma}=17 \mathrm{kN} / \mathrm{m}^{3} \\
& \gamma_{\mathrm{sr}}=\gamma_{\mathrm{sr}} / \gamma_{\gamma}=20.5 \mathrm{kN} / \mathrm{m}^{3} \\
& \phi^{\prime} \mathrm{r} . \mathrm{d}=\operatorname{atan}\left(\tan \left(\phi^{\prime} \mathrm{r} \mathrm{k}\right) / \gamma_{\phi^{\prime}}\right)=\mathbf{3 0 . 2} \mathrm{deg} \\
& \delta \mathrm{r} . \mathrm{d}=\operatorname{atan}\left(\tan \left(\delta_{\mathrm{r} . \mathrm{k}}\right) / \gamma_{\phi^{\prime}}\right)=\mathbf{1 4 . 6} \mathrm{deg}
\end{aligned}
$$

$$
\gamma_{\mathrm{b}^{\prime}}=\gamma_{\mathrm{b}} / \gamma_{\gamma}=20 \mathrm{kN} / \mathrm{m}^{3}
$$

$$
\phi^{\prime} \mathrm{b} . \mathrm{d}=\operatorname{atan}\left(\tan \left(\phi^{\prime} \mathrm{b} . \mathrm{k}\right) / \gamma_{\phi^{\prime}}\right)=30.2 \mathrm{deg}
$$

$$
\delta_{b . d}=\operatorname{atan}\left(\tan \left(\delta_{\text {b.k }}\right) / \gamma_{\phi^{\prime}}\right)=14.6 \mathrm{deg}
$$

$$
\delta_{\text {bb.d }}=\operatorname{atan}\left(\tan \left(\delta_{\text {bb.k }}\right) / \gamma_{\phi^{\prime}}\right)=\mathbf{2 2 . 2} \mathrm{deg}
$$

$$
c_{b . d}^{\prime}=c^{\prime} b . k / \gamma_{c^{\prime}}=\mathbf{0} \mathrm{kN} / \mathrm{m}^{2}
$$

$$
\mathrm{K}_{\mathrm{A}}=\sin \left(\alpha+\phi^{\prime} \mathrm{r} . \mathrm{d}\right)^{2} /\left(\sin (\alpha)^{2} \times \sin \left(\alpha-\delta_{\text {r.d }}\right) \times\left[1+\sqrt{ }\left[\sin \left(\phi^{\prime} . \mathrm{d}+\delta_{\text {r.d }}\right) \times \sin \left(\phi^{\prime} \mathrm{r} . \mathrm{d}-\beta\right)\right.\right.\right.
$$

$$
\left./(\sin (\alpha-\delta \mathrm{r} . \mathrm{d}) \times \sin (\alpha+\beta))]]^{2}\right)=0.300
$$

$$
\mathrm{K}_{\mathrm{P}}=\sin \left(90-\phi^{\prime} \mathrm{b} . \mathrm{d}\right)^{2} /\left(\sin \left(90+\delta_{\text {b.d }}\right) \times\left[1-\sqrt{ }\left[\sin \left(\phi^{\prime} \text { b.d }+\delta_{\text {b.d }}\right) \times \sin \left(\phi^{\prime} \text { b.d }\right) /(\sin (90\right.\right.\right.
$$

$$
\left.+\delta \text { b.d) }) \text {)] }]^{2}\right)=4.938
$$

$\mathrm{F}_{\text {stem }}=\gamma \mathrm{Gf} \times \mathrm{A}_{\text {stem }} \times \gamma_{\text {stem }}=38.3 \mathrm{kN} / \mathrm{m}$
Fbase $=\gamma$ Gf \times Abase $\times \gamma$ base $=30 \mathrm{kN} / \mathrm{m}$
Fmoist_v $=\gamma_{\mathrm{Gf}} \times \mathrm{A}_{\text {moist }} \times \gamma_{\mathrm{mr}}{ }^{\prime}=\mathbf{1 5 1 . 7} \mathrm{kN} / \mathrm{m}$
$F_{\text {total } _v}=F_{\text {stem }}+F_{\text {base }}+F_{\text {moist } _v}=220$ kN $/ \mathrm{m}$

Fsur_h $=K_{A} \times \cos (\delta$ r.d $) \times(\gamma G \times$ Surcharge $G+\gamma Q \times$ Surcharge $) \times$ heff $=\mathbf{2 2 . 4}$
kN/m
Fmoist_h $=\gamma \mathrm{G} \times \mathrm{K}_{\mathrm{A}} \times \cos (\delta$ r.d $) \times \gamma_{\mathrm{mr}}{ }^{\prime} \times$ heff $^{2} / 2=74.7 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_h }}=F_{\text {moist } _h}+F_{\text {sur_h }}=97 \mathrm{kN} / \mathrm{m}$

PASS - Resistance to sliding is greater than sliding force

Overturning check

Vertical forces on wall

Wall stem
Wall base
Moist retained soil
Total

$$
\begin{aligned}
& \mathrm{F}_{\text {stem }}=\gamma_{\mathrm{Gf}} \times \mathrm{A}_{\text {stem }} \times \gamma_{\text {stem }}=\mathbf{3 8 . 3 \mathrm { kN } / \mathrm { m }} \\
& \mathrm{F}_{\text {base }}=\gamma_{\mathrm{Gf}} \times \mathrm{A}_{\text {base }} \times \gamma_{\text {base }}=\mathbf{3 0 \mathrm { kN } / \mathrm { m }} \\
& \mathrm{F}_{\text {moist } _v}=\gamma_{\mathrm{Gf}} \times A_{\text {moist }} \times \gamma_{\mathrm{mr}}=151.7 \mathrm{kN} / \mathrm{m} \\
& \mathrm{~F}_{\text {total_ } _v}=\mathrm{F}_{\text {stem }}+\mathrm{F}_{\text {base }}+\mathrm{F}_{\text {moist } _v}=\mathbf{2 2 0} \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fexc_h }=\gamma \mathrm{Gf} \times \mathrm{K}_{\mathrm{P}} \times \cos (\delta \mathrm{b} . \mathrm{d}) \times \gamma \mathrm{b}^{\prime} \times\left(\mathrm{h}_{\text {pass }}+\text { hbase }\right)^{2} / 2=7.6 \mathrm{kN} / \mathrm{m} \\
& F_{\text {friction }}=F_{\text {total_v }} \times \tan \left(\delta_{\text {bb.d }}\right)=89.7 \mathrm{kN} / \mathrm{m} \\
& F_{\text {rest }}=F_{\text {exc_h }}+F_{\text {friction }}=97.3 \mathrm{kN} / \mathrm{m} \\
& F_{\text {oSsl }}=F_{\text {rest }} / F_{\text {total }} h=1.003
\end{aligned}
$$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev. 7	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

Horizontal forces on wall

Surcharge load

Moist retained soil
Base soil
Total
Overturning moments on wall
Surcharge load
Moist retained soil
Total
Restoring moments on wall
Wall stem
Wall base
Moist retained soil
Base soil
Total
Check stability against overturning
Factor of safety

Bearing pressure check

Vertical forces on wall

Wall stem
Wall base
Surcharge load
Moist retained soil
Total

Horizontal forces on wall

Surcharge load

Moist retained soil
Base soil
Total

Moments on wall

Wall stem
Wall base
Surcharge load
Moist retained soil
Base soil
Total
Check bearing pressure
Distance to reaction

Fsur_h $=K_{A} \times \cos (\delta r . d) \times(\gamma G \times$ Surchargeg $+\gamma Q \times$ Surcharge $) \times$ heff $=\mathbf{2 2 . 4}$
kN/m
Fmoist_h $=\gamma \mathrm{G} \times \mathrm{K}_{\mathrm{A}} \times \cos (\delta \mathrm{r} . \mathrm{d}) \times \gamma_{\mathrm{mr}}{ }^{\prime} \times$ heff $^{2} / 2=74.7 \mathrm{kN} / \mathrm{m}$

$F_{\text {total_h }}=$ Fmoist_h + Fexc_h + Fsur_h $=89.4 \mathrm{kN} / \mathrm{m}$

Msur_Ot $=\mathrm{F}_{\text {sur_h }} \times \mathrm{X}_{\text {sur_ }} \mathrm{h}=\mathbf{6 1 . 5} \mathrm{kNm} / \mathrm{m}$
Mmoist_OT $=$ Fmoist_h \times Xmoist_ $\mathrm{h}=136.9 \mathrm{kNm} / \mathrm{m}$
Mtotal_OT $=$ Mmoist_Ot + Msur_OT $=\mathbf{1 9 8 . 3} \mathrm{kNm} / \mathrm{m}$
$M_{\text {stem_R }}=F_{\text {stem }} \times X_{\text {stem }}=\mathbf{4 2 . 1} \mathrm{kNm} / \mathrm{m}$
Mbase_R $=$ Fbase \times Xbase $=45 \mathrm{kNm} / \mathrm{m}$
Mmoist_R = Fmoist_v \times Xmoist_v $=322.4 \mathrm{kNm} / \mathrm{m}$
$M_{\text {exc_R }}=-$ Fexc_h \times Xexc_h $=\mathbf{1} \mathrm{kNm} / \mathrm{m}$

FoSot $=$ Mtotal_R $/ M_{\text {total } _ \text {Ot }}=\mathbf{2 . 0 7}$
PASS - Maximum restoring moment is greater than overturning moment
$\mathrm{F}_{\text {stem }}=\gamma \mathrm{G} \times \mathrm{A}_{\text {stem }} \times \gamma_{\text {stem }}=38.3 \mathrm{kN} / \mathrm{m}$
Fbase $=\gamma \mathrm{G} \times$ Abase $\times \gamma_{\text {base }}=30 \mathrm{kN} / \mathrm{m}$
Fsur_v $=(\gamma G \times$ Surcharge $G+\gamma Q \times$ Surcharge $Q) \times$ Ineel $=\mathbf{2 4 . 5} \mathrm{kN} / \mathrm{m}$
Fmoist_v $=\gamma G \times$ Amoist $\times \gamma_{\mathrm{mr}}=151.7 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_v }}=F_{\text {stem }}+F_{\text {base }}+F_{\text {moist_v }}+F_{\text {sur_v }}=\mathbf{2 4 4 . 5} \mathbf{~ k N} / \mathrm{m}$

Fsur_h $=K_{A} \times \cos (\delta r . d) \times(\gamma G \times$ Surcharge $G+\gamma Q \times$ Surcharge $) \times$ heff $=\mathbf{2 2 . 4}$
kN/m
Fmoist_h $=\gamma G \times \mathrm{K}_{\mathrm{A}} \times \operatorname{COS}(\delta \mathrm{dr.d}) \times \gamma_{\mathrm{mr}}{ }^{\prime} \times \mathrm{heff}^{2} / 2=74.7 \mathrm{kN} / \mathrm{m}$
$F_{\text {pass_h }}=-\gamma G \mathrm{Gf} \times \mathrm{KP}_{\mathrm{P}} \times \cos (\delta$ b.d $) \times \gamma \mathrm{b}^{\prime} \times\left(\mathrm{d}_{\text {cover }}+\mathrm{hbase}\right)^{2} / 2=-7.6 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_h }}=\max \left(F_{\text {moist_h }}+\right.$ Fpass_h $^{\text {p }}$ Fsur_h $\left.-F_{\text {total_v }} \times \tan \left(\delta_{\text {bb.d }}\right), 0 \mathrm{kN} / \mathrm{m}\right)=0 \mathrm{kN} / \mathrm{m}$
$M_{\text {stem }}=F_{\text {stem }} \times \mathrm{X}_{\text {stem }}=\mathbf{4 2 . 1} \mathrm{kNm} / \mathrm{m}$
Mbase $=F_{\text {base }} \times$ Xbase $=45 \mathrm{kNm} / \mathrm{m}$
$M_{\text {sur }}=F_{\text {sur_ }} \mathrm{v} \times$ Xsur_v $-F_{\text {sur_ }} \mathrm{h} \times$ Xsur_h $=-9.4 \mathrm{kNm} / \mathrm{m}$
$\mathrm{M}_{\text {moist }}=$ Fmoist $_\times \times$Xmoist_v - Fmoist_ $\mathrm{h} \times$ Xmoist_h $=185.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {pass }}=-F_{\text {pass_h }} \times X_{\text {pass_h }}=1 \mathrm{kNm} / \mathrm{m}$
$M_{\text {total }}=M_{\text {stem }}+$ Mbase $+M_{\text {moist }}+M_{\text {pass }}+M_{\text {sur }}=\mathbf{2 6 4 . 2}$ kNm/m
$\bar{x}=M_{\text {total }} / F_{\text {total } _v=1081} \mathbf{m m}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.8	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

Eccentricity of reaction	$e=\bar{x}-$ loase $/ 2=-419 \mathrm{~mm}$
Loaded length of base	load $=2 \times \bar{x}=2162 \mathrm{~mm}$
Bearing pressure at toe	qtoe $=$ Fotal_v $^{\text {/ }}$ / load $=113.1 \mathrm{kN} / \mathrm{m}^{2}$
Bearing pressure at heel	$\mathrm{q}_{\text {neel }}=\mathbf{0} \mathrm{kN} / \mathrm{m}^{2}$
Effective overburden pressure	$\mathrm{q}=\left(\right.$ tbase $+\mathrm{dcover}^{\text {) }} \times \gamma^{\text {b }}{ }^{\prime}=8 \mathrm{kN} / \mathrm{m}^{2}$
Design effective overburden pressure	$\mathrm{q}^{\prime}=\mathrm{q} / \gamma_{\gamma}=8 \mathrm{kN} / \mathrm{m}^{2}$
Bearing resistance factors	$\mathrm{Na}_{\mathrm{q}}=\operatorname{Exp}\left(\pi \times \tan \left(\phi^{\prime}\right.\right.$ b. $\left.) ~\right) \times\left(\tan \left(45 \mathrm{deg}+\phi^{\prime} \text { b.d } / 2\right)\right)^{2}=18.753$
	$N_{c}=\left(N_{q}-1\right) \times \cot \left(\phi^{\prime}\right.$ b.d) $=30.543$
	$\mathrm{N}_{\gamma}=2 \times\left(\mathrm{N}_{\mathrm{q}}-1\right) \times \tan \left(\phi^{\prime}\right.$ b.d) $=20.637$
Foundation shape factors	$\mathrm{Sq}=1$
	$\mathrm{S}_{\gamma}=1$
	$\mathrm{Sc}=1$
Load inclination factors	$\mathrm{H}=\mathrm{Fsur}_{\text {_ }} \mathrm{h}+\mathrm{F}_{\text {moist_ }}+\mathrm{F}_{\text {pass_h }}=89.4 \mathrm{kN} / \mathrm{m}$
	$\mathrm{V}=\mathrm{F}_{\text {total } _\mathrm{v}}=244.5 \mathrm{kN} / \mathrm{m}$
	$\mathrm{m}=2$
	$\mathrm{i}_{\mathrm{q}}=\left[1-\mathrm{H} /\left(\mathrm{V}+\mathrm{l}_{\text {load }} \times \mathrm{C}^{\prime} \mathrm{b} . \mathrm{d} \times \cot \left(\phi^{\prime} \text { b. } \mathrm{d}\right) \text {) }\right]^{\mathrm{m}}=\mathbf{0 . 4 0 3}\right.$
	$\mathrm{i}_{\mathrm{y}}=\left[1-\mathrm{H} /\left(\mathrm{V}+\mathrm{lload} \times \cos ^{\prime} \text {.d } \times \cot \left(\phi^{\prime} \text { b.d }\right)\right)\right]^{(m+1)}=0.255$
	$\mathrm{i}_{\mathrm{c}}=\mathrm{i}_{\mathrm{q}}-\left(1-\mathrm{i}_{\mathrm{q}}\right) /\left(\mathrm{N}_{\mathrm{c}} \times \tan \left(\phi^{\prime} \mathrm{b} . \mathrm{d}\right)\right)=\mathbf{0 . 3 6 9}$

Net ultimate bearing capacity

Factor of safety

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{f}}=\mathrm{c}^{\prime} \mathrm{b} . \mathrm{d} \times \mathrm{N}_{\mathrm{c}} \times \mathrm{S}_{\mathrm{c}} \times \mathrm{i}_{\mathrm{c}}+\mathrm{q}^{\prime} \times \mathrm{N}_{\mathrm{q}} \times \mathrm{S}_{\mathrm{q}} \times \mathrm{i}_{\mathrm{q}}+0.5 \times \gamma \mathrm{b}^{\prime} \times \mathrm{lioad} \times \mathrm{N}_{\gamma} \times \mathrm{S}_{\gamma} \times \mathrm{i}_{\gamma}=174.3 \mathrm{kN} / \mathrm{m}^{2} \\
& \quad \mathrm{FoSbp}_{\mathrm{bp}}=\mathrm{nf}_{\mathrm{f}} / \max \left(\mathrm{q}_{\text {toe }}, \mathrm{q}_{\text {neel }}\right)=\mathbf{1 . 5 4 1}
\end{aligned}
$$

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No. 1

Tedds calculation version 2.9.04
Concrete details - Table 3.1-Strength and deformation characteristics for concrete

Concrete strength class
Characteristic compressive cylinder strength
Characteristic compressive cube strength
Mean value of compressive cylinder strength
Mean value of axial tensile strength
5% fractile of axial tensile strength
Secant modulus of elasticity of concrete
Partial factor for concrete - Table 2.1 N
Compressive strength coefficient - cl.3.1.6(1)
Design compressive concrete strength - exp.3.15
Maximum aggregate size
Ultimate strain - Table 3.1
Shortening strain - Table 3.1
Effective compression zone height factor
Effective strength factor
Bending coefficient k_{1}

C30/37
$\mathrm{f}_{\mathrm{ck}}=\mathbf{3 0 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
$f_{\text {ck, cube }}=\mathbf{3 7} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{cm}}=\mathrm{f}_{\mathrm{ck}}+8 \mathrm{~N} / \mathrm{mm}^{2}=38 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fctm}=0.3 \mathrm{~N} / \mathrm{mm}^{2} \times\left(\mathrm{f}_{\mathrm{ck}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right)^{2 / 3}=2.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\text {ctk }, 0.05}=0.7 \times \mathrm{f}_{\mathrm{ctm}}=2.0 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}_{\mathrm{cm}}=22 \mathrm{kN} / \mathrm{mm}^{2} \times\left(\mathrm{fcm} / 10 \mathrm{~N} / \mathrm{mm}^{2}\right)^{0.3}=32837 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma \mathrm{c}=\mathbf{1 . 5 0}$
$\alpha_{c c}=0.85$
$\mathrm{f}_{\mathrm{cd}}=\alpha_{\mathrm{cc}} \times \mathrm{f}_{\mathrm{ck}} / \gamma \mathrm{c}=17.0 \mathrm{~N} / \mathrm{mm}^{2}$
$h_{\text {agg }}=\mathbf{2 0} \mathbf{~ m m}$
ε cu2 $=0.0035$
ε сиз $=0.0035$
$\lambda=0.80$
$\eta=1.00$
$\mathrm{K}_{1}=\mathbf{0 . 4 0}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.9	
	$\begin{aligned} & \text { Calc. by } \\ & \text { U } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 17 / 2022 \end{array}$	Chk'd by	Date	App'd by	Date

Bending coefficient k_{2}
Bending coefficient k3
Bending coefficient k4

Reinforcement details

Characteristic yield strength of reinforcement
Modulus of elasticity of reinforcement
Partial factor for reinforcing steel - Table 2.1 N
Design yield strength of reinforcement

Cover to reinforcement

Front face of stem
Rear face of stem
Top face of base
Bottom face of base
$\mathrm{K}_{2}=1.00 \times(0.6+0.0014 /$ عcu2 $)=\mathbf{1 . 0 0}$
$K_{3}=\mathbf{0 . 4 0}$
$\mathrm{K}_{4}=1.00 \times\left(0.6+0.0014 / \varepsilon_{\mathrm{cu}}\right)=\mathbf{1 . 0 0}$
$\mathrm{f}_{\mathrm{yk}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}_{\mathrm{s}}=200000 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma s=1.15$
$\mathrm{f}_{\mathrm{yd}}=\mathrm{f}_{\mathrm{yk}} / \gamma \mathrm{s}=435 \mathrm{~N} / \mathrm{mm}^{2}$

Csf $=40 \mathrm{~mm}$
$\mathrm{Csr}=50 \mathrm{~mm}$
$\mathrm{Cbt}=50 \mathrm{~mm}$
$\mathrm{Cbb}=75 \mathrm{~mm}$

LeddsLEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.10	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

Check stem design at base of stem

Depth of section
$\mathrm{h}=\mathbf{3 0 0} \mathrm{mm}$
Rectangular section in flexure - Section 6.1
Design bending moment combination 2
$\mathrm{M}=162 \mathrm{kNm} / \mathrm{m}$
Depth to tension reinforcement
$\mathrm{d}=\mathrm{h}-\mathrm{Csr}-\phi \mathrm{ss} / 2=\mathbf{2 4 2} \mathrm{mm}$
$\mathrm{K}=\mathrm{M} /\left(\mathrm{d}^{2} \times \mathrm{f}_{\mathrm{ck}}\right)=0.092$
$\mathrm{K}^{\prime}=(2 \times \eta \times \alpha c \mathrm{c} / \gamma \mathrm{c}) \times\left(1-\lambda \times\left(\delta-\mathrm{K}_{1}\right) /\left(2 \times \mathrm{K}_{2}\right)\right) \times\left(\lambda \times\left(\delta-\mathrm{K}_{1}\right) /\left(2 \times \mathrm{K}_{2}\right)\right)$
$K^{\prime}=0.207$
$K^{\prime}>K$ - No compression reinforcement is required
Lever arm
$z=\min \left(0.5+0.5 \times\left(1-2 \times K /\left(\eta \times \alpha_{c c} / \gamma c\right)\right)^{0.5}, 0.95\right) \times d=220 \mathrm{~mm}$
Depth of neutral axis
Area of tension reinforcement required
$x=2.5 \times(d-z)=54 \mathrm{~mm}$
$A_{s r . r e q}=M /\left(f_{y d} \times z\right)=1691 \mathrm{~mm}^{2} / \mathrm{m}$
Tension reinforcement provided
16 dia.bars @ 100 c/c
Asr.prov $=\pi \times \phi$ sr $^{2} /(4 \times \mathrm{Ssr})=\mathbf{2 0 1 1} \mathrm{mm}^{2} / \mathrm{m}$
$A_{\text {sr.min }}=\max \left(0.26 \times \mathrm{f}_{\mathrm{ctm}} / \mathrm{f}_{\mathrm{yk}}, 0.0013\right) \times \mathrm{d}=364 \mathrm{~mm}^{2} / \mathrm{m}$
Minimum area of reinforcement - exp.9.1N
$A_{\text {sr. }}^{\text {max }}=0.04 \times \mathrm{h}=\mathbf{1 2 0 0 0} \mathrm{mm}^{2} / \mathrm{m}$
$\max \left(\right.$ Asr.req $\mathrm{A}_{\text {sr.min) }}$ / $\mathrm{A}_{\text {sr.prov }}=\mathbf{0 . 8 4 1}$
PASS - Area of reinforcement provided is greater than area of reinforcement required
Library item: Rectangular single output

Deflection control - Section 7.4

Reference reinforcement ratio
Required tension reinforcement ratio
Required compression reinforcement ratio
Structural system factor - Table 7.4N
Reinforcement factor - exp.7.17
Limiting span to depth ratio - exp.7.16.b

Actual span to depth ratio
$\rho_{0}=\sqrt{ }\left(f_{\text {ck }} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right) / 1000=\mathbf{0 . 0 0 5}$
$\rho=$ Asr.req $/ \mathrm{d}=0.007$
$\rho^{\prime}=$ Asr.2.req $/ d_{2}=0.000$
$\mathrm{Kb}=0.4$
$\mathrm{K}_{\mathrm{s}}=\min \left(500 \mathrm{~N} / \mathrm{mm}^{2} /\left(\mathrm{fyk}_{\mathrm{yk}} \times\right.\right.$ Asr.req $/$ Asr.prov $\left.), 1.5\right)=1.189$
$\min \left(K_{s} \times K_{b} \times\left[11+1.5 \times \sqrt{ }\left(f_{c k} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right) \times \rho_{0} /\left(\rho-\rho^{\prime}\right)+\sqrt{ }\left(f_{\text {ck }} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right) \times\right.\right.$
$\left.\left.\sqrt{ }\left(\rho^{\prime} / \rho 0\right) / 12\right], 40 \times K b\right)=8.3$
$h_{\text {stem }} / \mathrm{d}=21.1$

1eスa Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.11	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

FAIL - Span to depth ratio exceeds deflection control limit

Crack control - Section 7.3

Limiting crack width
Variable load factor - EN1990 - Tab
Serviceability bending moment
Tensile stress in reinforcement
Load duration
Load duration factor
Effective area of concrete in tension
Mean value of concrete tensile streng
Reinforcement ratio
Modular ratio
Bond property coefficient
Strain distribution coefficient
Maximum crack spacing - exp.7.11
Maximum crack width - exp.7.8
$W_{\text {max }}=0.3 \mathrm{~mm}$
Variable load factor - EN1990 - Table A1. 1
$\psi 2=0.6$
$\mathrm{M}_{\mathrm{sls}}=\mathbf{1 0 4 . 9 \mathrm { kNm } / \mathrm { m }}$
$\sigma_{s}=\mathrm{Msis}^{\prime} /($ Asr.prov $\times \mathrm{z})=236.6 \mathrm{~N} / \mathrm{mm}^{2}$
Long term
$k_{t}=0.4$
$\mathrm{A}_{\mathrm{c} \text {.eff }}=\min (2.5 \times(\mathrm{h}-\mathrm{d}),(\mathrm{h}-\mathrm{x}) / 3, \mathrm{~h} / 2)$
$\mathrm{A}_{\text {c.eff }}=81985 \mathrm{~mm}^{2} / \mathrm{m}$
$\mathrm{f}_{\text {ct.eft }}=\mathrm{f}_{\mathrm{ct}}=2.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\rho_{\text {p.eff }}=$ Asr.prov $/ A_{\text {c.eff }}=\mathbf{0 . 0 2 5}$
$\alpha_{\mathrm{e}}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{cm}}=6.091$
$k_{1}=0.8$
$\mathrm{k}_{2}=0.5$
$\mathrm{k}_{3}=3.4$
$\mathrm{k}_{4}=0.425$
Sr.max $=\mathrm{k}_{3} \times \mathrm{Csr}_{\mathrm{sr}}+\mathrm{k}_{1} \times \mathrm{k}_{2} \times \mathrm{k}_{4} \times \mathrm{\phi sr} / \rho_{\mathrm{p} . \mathrm{eff}}=\mathbf{2 8 1} \mathrm{mm}$
$W_{k}=S r . \max \times \max \left(\sigma_{s}-k_{t} \times\left(f_{c t . e f f} / \rho_{p . e f f}\right) \times\left(1+\alpha_{e} \times \rho_{p . e f f}\right), 0.6 \times \sigma_{s}\right) / E_{s}$
$W_{k}=0.256 \mathrm{~mm}$
$W_{k} / W_{\text {max }}=0.854$
PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2
Design shear force
$\mathrm{V}=85.8 \mathrm{kN} / \mathrm{m}$
$C_{R d, \mathrm{c}}=0.18 / \gamma \mathrm{C}=\mathbf{0 . 1 2 0}$
$k=\min (1+\sqrt{ }(200 \mathrm{~mm} / \mathrm{d}), 2)=1.909$
Longitudinal reinforcement ratio
$\rho \mathrm{l}=\min ($ Asr.prov $/ \mathrm{d}, 0.02)=\mathbf{0 . 0 0 8}$
$V_{\text {min }}=0.035 \mathrm{~N}^{1 / 2} / \mathrm{mm} \times \mathrm{k}^{3 / 2} \times \mathrm{f}_{\mathrm{ck}} 0.5=0.506 \mathrm{~N} / \mathrm{mm}^{2}$
Design shear resistance - exp.6.2a \& 6.2b
$V_{\text {Rd. }}=\max \left(C_{\text {Rd.c }} \times \mathrm{k} \times\left(100 \mathrm{~N}^{2} / \mathrm{mm}^{4} \times \rho \mathrm{f} \times \mathrm{fck}\right)^{1 / 3}, V_{\text {min }}\right) \times \mathrm{d}$
$V_{\text {Rd.c }}=161.9 \mathrm{kN} / \mathrm{m}$
$\mathrm{V} / \mathrm{V}_{\text {Rd. }}=\mathbf{0 . 5 3 0}$
PASS - Design shear resistance exceeds design shear force
Horizontal reinforcement parallel to face of stem - Section 9.6
Minimum area of reinforcement - cl.9.6.3(1)
$A_{\text {sx.req }}=\max (0.25 \times$ Asr.prov, $0.001 \times$ tstem $)=503 \mathrm{~mm}^{2} / \mathrm{m}$
Maximum spacing of reinforcement - cl.9.6.3(2)
Transverse reinforcement provided
Area of transverse reinforcement provided

Ssx_max = $\mathbf{4 0 0} \mathrm{mm}$
12 dia.bars @ 200 c/c
Asx.prov $=\pi \times \phi_{s x^{2}} /(4 \times \mathrm{Ssx})=565 \mathrm{~mm}^{2} / \mathrm{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design at toe

Depth of section
$\mathrm{h}=400 \mathrm{~mm}$
Rectangular section in flexure - Section 6.1
Design bending moment combination 1
$\mathrm{M}=59.9 \mathrm{kNm} / \mathrm{m}$
Depth to tension reinforcement
$\mathrm{d}=\mathrm{h}-\mathrm{Cbb}-\phi \mathrm{b} / 2=\mathbf{3 1 7} \mathrm{mm}$

1eスa Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.12	
	Calc. by U	$\begin{aligned} & \text { Date } \\ & 10 / 17 / 2022 \end{aligned}$	Chk'd by	Date	App'd by	Date

```
\(\mathrm{K}=\mathrm{M} /\left(\mathrm{d}^{2} \times \mathrm{fck}_{\mathrm{ck}}\right)=\mathbf{0 . 0 2 0}\)
\(K^{\prime}=(2 \times \eta \times \alpha c c / \gamma c) \times\left(1-\lambda \times\left(\delta-\mathrm{K}_{1}\right) /\left(2 \times \mathrm{K}_{2}\right)\right) \times\left(\lambda \times\left(\delta-\mathrm{K}_{1}\right) /\left(2 \times \mathrm{K}_{2}\right)\right)\)
\(K^{\prime}=0.207\)
```

 \(K^{\prime}>\boldsymbol{K}\) - No compression reinforcement is required
 Lever arm
Depth of neutral axis
Area of tension reinforcement required Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement - exp.9.1N
Maximum area of reinforcement - cl.9.2.1.1(3)
$K^{\prime}>\boldsymbol{K}$ - No compression reinforcement is required
$z=\min \left(0.5+0.5 \times\left(1-2 \times K /\left(\eta \times \alpha_{c c} / \gamma c\right)\right)^{0.5}, 0.95\right) \times d=301 \mathrm{~mm}$
$x=2.5 \times(d-z)=40 \mathrm{~mm}$
Abb.req $=M /(f y d \times z)=457 \mathrm{~mm}^{2} / \mathrm{m}$
16 dia.bars @ 200 c/c
Abb.prov $=\pi \times \phi$ bb $^{2} /(4 \times \mathrm{Sbb})=1005 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{\text {bb.min }}=\max \left(0.26 \times \mathrm{fctm} / \mathrm{f}_{\mathrm{yk}}, 0.0013\right) \times \mathrm{d}=477 \mathrm{~mm}^{2} / \mathrm{m}$
Abb.max $=0.04 \times \mathrm{h}=\mathbf{1 6 0 0 0} \mathrm{mm}^{2} / \mathrm{m}$
$\max \left(\right.$ Abb.req , $\left.\mathrm{A}_{\mathrm{bb} . \text { min }}\right) / \mathrm{A}_{\mathrm{bb} . \mathrm{prov}}=0.475$
PASS - Area of reinforcement provided is greater than area of reinforcement required
Library item: Rectangular single output

Crack control - Section 7.3

Limiting crack width
Variable load factor - EN1990 - Table A1.1
Serviceability bending moment
Tensile stress in reinforcement Load duration

Load duration factor
Effective area of concrete in tension

Mean value of concrete tensile strength
Reinforcement ratio
Modular ratio
Bond property coefficient
Strain distribution coefficient

Maximum crack spacing - exp.7.11
Maximum crack width - exp.7.8

Rectangular section in shear - Section 6.2
Design shear force

Longitudinal reinforcement ratio

Design shear resistance - exp.6.2a \& 6.2b
$\mathrm{W}_{\text {max }}=0.3 \mathrm{~mm}$
$\psi 2=0.6$
Msls $=43.3 \mathrm{kNm} / \mathrm{m}$
$\sigma_{s}=M_{s l s} /($ Abb.prov $\times \mathrm{z})=143.2 \mathrm{~N} / \mathrm{mm}^{2}$
Long term
$k_{t}=0.4$
$\mathrm{A}_{\mathrm{c} . \text { eff }}=\min (2.5 \times(\mathrm{h}-\mathrm{d}),(\mathrm{h}-\mathrm{x}) / 3, \mathrm{~h} / 2)$
$A_{\text {c.eff }}=120125 \mathrm{~mm}^{2} / \mathrm{m}$
$\mathrm{f}_{\mathrm{ct} \text {.eff }}=\mathrm{f}_{\mathrm{ctm}}=2.9 \mathrm{~N} / \mathrm{mm}^{2}$
$\rho_{\text {p.eff }}=A_{b b . p r o v} / A_{c . e f f}=0.008$
$\alpha_{\mathrm{e}}=\mathrm{E}_{\mathrm{s}} / \mathrm{E}_{\mathrm{cm}}=6.091$
$\mathrm{k}_{1}=0.8$
$\mathrm{k}_{2}=0.5$
$\mathrm{k}_{3}=3.4$
$\mathrm{k}_{4}=0.425$
Sr.max $=\mathrm{k}_{3} \times \mathrm{Cbb}+\mathrm{k}_{1} \times \mathrm{k}_{2} \times \mathrm{k}_{4} \times$ фbb $/ \rho_{\text {p.eff }}=580 \mathrm{~mm}$
$W_{k}=S_{r . m a x} \times \max \left(\sigma_{s}-k_{t} \times\left(f_{c t . e f f} / \rho_{p \text {.eff }}\right) \times\left(1+\alpha_{e} \times \rho_{p \text {.eff }}\right), 0.6 \times \sigma_{s}\right) / E_{s}$
$W_{k}=0.249 \mathrm{~mm}$
$W_{k} / W_{\text {max }}=0.83$
PASS - Maximum crack width is less than limiting crack width
$\mathrm{V}=121.3 \mathrm{kN} / \mathrm{m}$
$C_{\text {Rd }, \mathrm{c}}=0.18 / \gamma \mathrm{c}=\mathbf{0 . 1 2 0}$
$k=\min (1+\sqrt{ }(200 \mathrm{~mm} / \mathrm{d}), 2)=1.794$
$\rho \mathrm{l}=\min ($ Abb.prov $/ \mathrm{d}, 0.02)=0.003$
$V_{\text {min }}=0.035 \mathrm{~N}^{1 / 2} / \mathrm{mm} \times \mathrm{k}^{3 / 2} \times \mathrm{f}_{\mathrm{ck}}^{0.5}=\mathbf{0 . 4 6 1} \mathrm{N} / \mathrm{mm}^{2}$
$V_{\text {Rd. }}=\max \left(\right.$ Crd.c $\left.\times \mathrm{k} \times\left(100 \mathrm{~N}^{2} / \mathrm{mm}^{4} \times \rho \mathrm{fl} \times \mathrm{fck}\right)^{1 / 3}, \mathrm{~V}_{\text {min }}\right) \times \mathrm{d}$
$V_{\text {Rd. }}=146.1 \mathrm{kN} / \mathrm{m}$
$\mathrm{V} / \mathrm{V}_{\text {Rd. }}=\mathbf{0 . 8 3 0}$

Tekla Tedds LEMARG ENGINEERING	Project				Job Ref.	
	Section				Sheet no./rev.13	
	Calc. by U	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 17 / 2022 \end{array}$	Chk'd by	Date	App'd by	Date

PASS - Design shear resistance exceeds design shear force

Check base design at heel

Depth of section
$\mathrm{h}=400 \mathrm{~mm}$
Rectangular section in flexure - Section 6.1
Design bending moment combination 2
Depth to tension reinforcement
$\mathrm{M}=108.7 \mathrm{kNm} / \mathrm{m}$
$\mathrm{d}=\mathrm{h}-\mathrm{Cbt}-\phi \mathrm{bt} / 2=\mathbf{3 4 2} \mathrm{mm}$
$\mathrm{K}=\mathrm{M} /\left(\mathrm{d}^{2} \times \mathrm{fck}_{\mathrm{c}}\right)=0.031$
$\mathrm{K}^{\prime}=\left(2 \times \eta \times \alpha_{c c} / \gamma \mathrm{c}\right) \times\left(1-\lambda \times\left(\delta-\mathrm{K}_{1}\right) /\left(2 \times \mathrm{K}_{2}\right)\right) \times\left(\lambda \times\left(\delta-\mathrm{K}_{1}\right) /\left(2 \times \mathrm{K}_{2}\right)\right)$
$K^{\prime}=0.207$
$K^{\prime}>\boldsymbol{K}$ - No compression reinforcement is required
Lever arm
Depth of neutral axis
Area of tension reinforcement required
Tension reinforcement provided
Area of tension reinforcement provided
Minimum area of reinforcement - exp.9.1N
Maximum area of reinforcement - cl.9.2.1.1(3)
$z=\min \left(0.5+0.5 \times\left(1-2 \times K /\left(\eta \times \alpha_{c c} / \gamma c\right)\right)^{0.5}, 0.95\right) \times d=325 \mathrm{~mm}$
$x=2.5 \times(d-z)=43 \mathrm{~mm}$
Abt.req $=M /\left(\mathrm{f}_{\mathrm{yd}} \times \mathrm{z}\right)=769 \mathrm{~mm}^{2} / \mathrm{m}$
16 dia.bars @ 150 c/c
Abt.prov $=\pi \times \phi$ bt $^{2} /(4 \times$ Sbt $)=1340 \mathrm{~mm}^{2} / \mathrm{m}$
Abt.min $=\max \left(0.26 \times \mathrm{ftctm} / \mathrm{f}_{\mathrm{yk}}, 0.0013\right) \times \mathrm{d}=515 \mathrm{~mm}^{2} / \mathrm{m}$
Abt.max $=0.04 \times \mathrm{h}=\mathbf{1 6 0 0 0} \mathrm{mm}^{2} / \mathrm{m}$
$\max \left(\right.$ Abt.req 2, Abt.min) $/ A_{b t . p r o v}=0.574$
PASS - Area of reinforcement provided is greater than area of reinforcement required
Library item: Rectangular single output

Crack control - Section 7.3

Limiting crack width

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force
$V=101.9 \mathrm{kN} / \mathrm{m}$

	Project				Job Ref.	
	Section				Sheet no./rev.14	
	Calc. by U	$\begin{array}{\|l\|} \hline \text { Date } \\ 10 / 17 / 2022 \end{array}$	Chk'd by	Date	App'd by	Date

$$
\begin{aligned}
& C_{\text {Rd }, \mathrm{c}}=0.18 / \gamma \mathrm{C}=\mathbf{0 . 1 2 0} \\
& k=\min (1+\sqrt{ }(200 \mathrm{~mm} / \mathrm{d}), 2)=1.765 \\
& \rho \mathrm{l}=\min (\text { Abt.prov } / \mathrm{d}, 0.02)=\mathbf{0 . 0 0 4} \\
& V_{\text {min }}=0.035 \mathrm{~N}^{1 / 2} / \mathrm{mm} \times \mathrm{k}^{3 / 2} \times \mathrm{fck}^{0.5}=\mathbf{0 . 4 4 9 \mathrm { N } / \mathrm { mm } ^ { 2 }} \\
& V_{\text {Rd. }}=\max \left(C_{\text {Rd.c }} \times \mathrm{k} \times\left(100 \mathrm{~N}^{2} / \mathrm{mm}^{4} \times \rho \mathrm{f} \times \mathrm{fck}\right)^{1 / 3}, \mathrm{~V} \text { min }\right) \times \mathrm{d} \\
& V_{\text {Rd.c }}=164.7 \mathrm{kN} / \mathrm{m} \\
& \mathrm{~V} / \mathrm{V}_{\text {Rd. }}=\mathbf{0 . 6 1 9} \\
& \text { PASS - Design shear resistance exceeds design shear force }
\end{aligned}
$$

Longitudinal reinforcement ratio

Design shear resistance - exp.6.2a \& 6.2b

Secondary transverse reinforcement to base - Section 9.3

Minimum area of reinforcement -cl.9.3.1.1(2) $\quad A_{b x . r e q ~}=0.2 \times$ Abt.prov $=\mathbf{2 6 8 ~ m m}{ }^{2} / \mathrm{m}$
Maximum spacing of reinforcement -cl.9.3.1.1(3) \quad Sbx_max $=450 \mathrm{~mm}$
Transverse reinforcement provided 10 dia.bars @ 200 c/c

Area of transverse reinforcement provided
Abx.prov $=\pi \times \phi b x^{2} /(4 \times \mathrm{Sbx})=393 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of reinforcement provided is greater than area of reinforcement required

10 dia.bars @ $200 \mathrm{c} / \mathrm{c}$
transverse reinforcemen
Reinforcement details

